Cut cotorsion pairs

نویسندگان

چکیده

Abstract We present the concept of cotorsion pairs cut along subcategories an abelian category. This provides a generalization complete pairs, and represents general framework to find approximations restricted certain subcategories. also exhibit some connections between Auslander–Buchweitz approximation theory, by considering relative analogs for Frobenius contexts. Several applications are given in settings Gorenstein homological algebra, chain complexes, quasi-coherent sheaves, as well characterize important results on Finitistic Dimension Conjecture, existence right adjoints quotient functors Serre subcategories, description triangulated categories co- t -structures.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tilting Cotorsion Pairs

Let R be a ring and T be a 1-tilting right R-module. Then T is of countable type. Moreover, T is of finite type in case R is a Prüfer domain.

متن کامل

Cotorsion Pairs Induced by Duality Pairs

We introduce the notion of a duality pair and demonstrate how the left half of such a pair is “often” covering and preenveloping. As an application, we generalize a result by Enochs et al. on Auslander and Bass classes, and we prove that the class of Gorenstein injective modules—introduced by Enochs and Jenda—is covering when the ground ring has a dualizing complex.

متن کامل

Cotorsion pairs and model categories

The purpose of this paper is to describe a connection between model categories, a structure invented by algebraic topologists that allows one to introduce the ideas of homotopy theory to situations far removed from topological spaces, and cotorsion pairs, an algebraic notion that simultaneously generalizes the notion of projective and injective objects. In brief, a model category structure on a...

متن کامل

On the Cogeneration of Cotorsion Pairs

Let R be a Dedekind domain. In [6], Enochs’ solution of the Flat Cover Conjecture was extended as follows: (∗) If C is a cotorsion pair generated by a class of cotorsion modules, then C is cogenerated by a set. We show that (∗) is the best result provable in ZFC in case R has a countable spectrum: the Uniformization Principle UP implies that C is not cogenerated by a set whenever C is a cotorsi...

متن کامل

Infinite Dimensional Tilting Modules and Cotorsion Pairs

Classical tilting theory generalizes Morita theory of equivalence of module categories. The key property – existence of category equivalences between large full subcategories of the module categories – forces the representing tilting module to be finitely generated. However, some aspects of the classical theory can be extended to infinitely generated modules over arbitrary rings. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2021

ISSN: ['0017-0895', '1469-509X']

DOI: https://doi.org/10.1017/s0017089521000367